发布于:2020-05-03 14:11:53
0《章末复习提升课》指数函数与对数函数PPT
指数与对数的运算
求下列各式的值:
(1)827-23-3e•e23+(2-e)2+10lg 2;
(2)lg25+lg 2×lg 500-12lg125-log29×log32.
【解】 (1)827-23-3e•e23+(2-e)2+10lg 2
=233-23-e13•e23+(e-2)+2
=23-2-e+e-2+2=322=94.
(2)lg25+lg 2×lg 500-12lg125-log29×log32
=lg25+lg 2×lg 5+2lg 2-lg15-log39
=lg 5(lg 5+lg 2)+2lg 2-lg 2+1-2
=lg 5+lg 2-1=1-1=0.
(1)指数与对数的运算应遵循的原则
①指数的运算:注意化简顺序,一般负指数先转化成正指数,根式化为分数指数幂运算.另外,若出现分式,则要注意对分子、分母因式分解以达到约分的目的;
②对数的运算:注意公式应用过程中范围的变化,前后要等价,一般本着真数化简的原则进行.
(2)底数相同的对数式化简的两种基本方法
①“收”:将同底的两对数的和(差)收成积(商)的对数;
②“拆”:将积(商)的对数拆成对数的和(差).
指数函数、对数函数的图象问题
若函数y=logax(a>0,且a≠1)的图象如图所示,则下列函数图象正确的是( )
【解析】由题意y=logax(a>0,且a≠1)的图象过(3,1)点,可解得a=3.选项A中,y=3-x=13x,显然图象错误;选项B中,y=x3,由幂函数图象可知正确;选项C中,y=(-x)3=-x3,显然与所画图象不符;选项D中,y=log3(-x)的图象与y=log3x的图象关于y轴对称,显然不符.故选B.
(1)识别函数的图象从以下几个方面入手:
①单调性:函数图象的变化趋势;
②奇偶性:函数图象的对称性;
③特殊点对应的函数值.
(2)已知不能解出的方程或不等式的解求参数的范围常用数形结合的思想解决.
1.已知a>1,b<-1,则函数y=loga(x-b)的图象不经过( )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
2.对a>0且a≠1的所有正实数,函数y=ax+1-2的图象一定经过一定点,则该定点的坐标是________.
... ... ...
《章末复习提升课》平面向量初步PPT 综合提高 平面向量的有关概念 例1 给出下列命题: ①有向线段就是向量,向量就是有向线段; ②向量a与向量b平行,则a与b的方向相同或相反; ③向..
《章末复习提升课》统计与概率PPT 综合提高 抽样方法 例1 (1)在简单随机抽样中,某一个个体被抽到的可能性( ) A.与第几次抽样有关,第一次被抽到的可能性最大 B.与第几次抽样有关,..
《章末复习提升课》指数函数、对数函数与幂函数PPT课件 综合提高 指数、对数的运算 例1 化简:(1)(8) -23(3102)92105; (2)2log32-log3329+log38-25log53. 规律方法 指数、对数的..